Categories

# MA8491 Question Paper Numerical Methods

## Sample MA8491 Question Paper Numerical Methods:

1.State Newton’s formula for interpolation.
2. State Newton’s divided difference interpolation formula .
3. State Lagrange’s interpolation formula for unequal intervals.
4. What do you mean by inverse interpolation?
5. write down the formula for the cubic spline polynomial y(x).
6.State any two properties of divided differences. MA8491 Question Paper Numerical Methods
7. State any two properties of cubic spline function.
8. Find the divided differences of f(x)=x3-x2+3x+8 for the arguments 0,1,4,5.
9. Find the second degree polynomial from the following data:
10. Given f(0)= -1 f(1)=1, f(2)=4, find the roots of Newton’s interpolating polynomial equation .
PART – B QUESTIONS
1. Using Lagrange’s interpolation formula, find y(10) given that y(5) = 12, y(6) =13, y(9) =14,
y(11)=16. MA8491 Question Paper Numerical Methods
2. Use Lagrange’s method to find log 656 10 , given that log 654 2.8156, 10  log 658 2.8182, 10 
log 659 2.8189 10  and log 661 2.8202. 10 
3. Using Lagrange’s interpolation, calculate the profit in the year 2000 from the following data:
Year 1997 1999 2001 2002
Profit in MA8491 Question Paper Numerical Methods
lakhs of Rs.
43 65 159 248
4. Find the age corresponding to the annuity value 13.6 given the table:

7. What do you mean by numerical integration?
8. State Simpson’s 1/3 and 3/8 formulas for numerical integration.
9. In numerical integration, what should be the number of intervals to apply Simpson’s one-third
rule and Simpson’s three-eighth rule?
10. State the two point Gaussian quadrature formula to evaluate 
f (x) dx MA8491 Question Paper Numerical Methods
11. State the three point Gaussian quadrature formula to evaluate 
f (x) dx
12. Using Simpson’s rule, find e dx x given that
1, 2.72, 7.39, 20.09, 54.6 e0  e1  e2  e3  e4 
13. Evaluate 
using Gauss two-point formula.
14. Evaluate
t dt by Gaussian two-point formula.
15. Evaluate  MA8491 Question Paper Numerical Methods

by Gauss three point formula.
16. State Trapezoidal rule to evaluate a double integral.
17. State Simpson’s 1/3 rule to evaluate a double integral.

 Subject name NUMERICAL METHODS Short Name m4 Semester 4 Subject Code MA8491 Regulation 2017 regulation